

Report No.: TB-FCC156795 Page: 1 of 20

# FCC Part 15B Test Report

| Application No.      |       | TB171017144                |
|----------------------|-------|----------------------------|
| Applicant            | :     | USC056                     |
| Equipment Under Test | t (EU | т)                         |
| EUT Name             | :     | Wireless power bank        |
| Model(s)             | 29    | SP0328 (TITAN)             |
| Brand Name           | :     | N/A                        |
| Receipt Date         | 19:00 | 2017-10-26                 |
| Test Date            | :     | 2017-10-26 to 2017-10-30   |
| Issue Date           |       | 2017-10-30                 |
| Standards            | 2     | FCC Part 15:2016 Subpart B |
| Conclusions          | : {   | PASS                       |

In the configuration tested, the EUT complied with the standards specified above The EUT technically complies with the FCC requirements

**Test/Witness Engineer** 

Approved & Authorized



This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

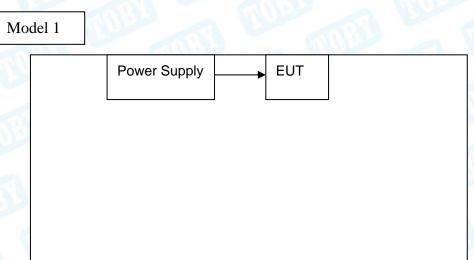


# Contents

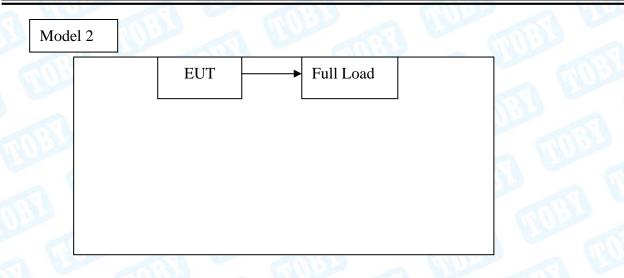
| 100 | NTENTS                                                       | 2  |
|-----|--------------------------------------------------------------|----|
| 1.  | GENERAL INFORMATION                                          |    |
|     | 1.1 Client Information                                       |    |
|     | 1.2 General Description of EUT (Equipment Under Test)        |    |
|     | 1.3 Block Diagram Showing The Configuration of System Tested |    |
|     | 1.4 Description of Support Units                             |    |
|     | 1.5 Description of Test Mode                                 |    |
|     | 1.6 Test standards                                           |    |
|     | 1.7 Test Facility                                            |    |
|     | 1.8 Equipment Used Test                                      |    |
| 2.  | TEST SUMMARY                                                 |    |
| 3.  | CONDUCTED EMISSION TEST                                      | 8  |
|     | 3.1 Test Standard and Limit                                  | 8  |
|     | 3.2 Test Setup                                               | 8  |
|     | 3.3 Test Procedure                                           | 8  |
|     | 3.4 Test Data                                                |    |
| 4.  | RADIATED EMISSION TEST                                       | 10 |
|     | 4.1 Test Standard and Limit                                  |    |
|     | 4.2 Test Setup                                               | 10 |
|     | 4.3 Test Procedure                                           | 10 |
|     | 4.4 Test Data                                                |    |
| 5.  | PHOTOGRAPHS - CONSTRUCTIONAL DETAILS                         | 16 |
| 6.  | PHOTOGRAPHS - TEST SETUP                                     |    |



## 1. General Information


## **1.1 Client Information**

| Applicant    |   | USC056 |
|--------------|---|--------|
| Address      |   | China  |
| I THE        |   |        |
| Manufacturer |   | USC056 |
| Address      |   | China  |
|              | - |        |


## 1.2 General Description of EUT (Equipment Under Test)

| EUT Name     | 1: | Wireless power bank                                           |
|--------------|----|---------------------------------------------------------------|
| Model(s)     |    | SP0328 (TITAN)                                                |
| Brand Name   | -  | N/A                                                           |
| Power Supply | :  | Input: DC 5V/1500Ma,Output: DC 5V/2100mA<br>Capacity: 4000mAh |
| Remark: /    | 3  |                                                               |

## 1.3 Block Diagram Showing The Configuration of System Tested







### 1.4 Description of Support Units

| Name         | Model     | S/N     | Manufacturer | Used " √ "   |
|--------------|-----------|---------|--------------|--------------|
| Power Supply | 02D050200 | M CHO P | BSY          | $\checkmark$ |

### 1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

| For Conducted Test |                  |  |  |  |  |  |
|--------------------|------------------|--|--|--|--|--|
| Final Test Mode    | Description      |  |  |  |  |  |
| Mode 1 N/A         |                  |  |  |  |  |  |
| For Radiated Test  |                  |  |  |  |  |  |
| Final Test Mode    | Description      |  |  |  |  |  |
| Mode 1             | Charging Mode    |  |  |  |  |  |
| Mode 2             | Discharging Mode |  |  |  |  |  |

#### 1.6 Test standards

The objective is to determine compliance with FCC Part 15, Subpart B, and section 15.107, 15.109 rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.



### 1.7 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

#### CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

#### FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

#### IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.



## 1.8 Equipment Used Test

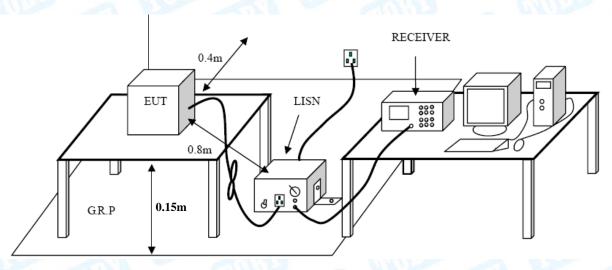
| Radiation E               | Radiation Emission Test |           |            |               |                  |  |  |  |
|---------------------------|-------------------------|-----------|------------|---------------|------------------|--|--|--|
| Equipment                 | Manufacturer            | Model No. | Serial No. | Last Cal.     | Cal. Due<br>Date |  |  |  |
| Spectrum<br>Analyzer      | Agilent                 | E4407B    | MY45106456 | Jul. 20, 2017 | Jul. 19, 2018    |  |  |  |
| EMI Test<br>Receiver      | Rohde & Schwarz         | ESCI      | 100010/007 | Jul. 20, 2017 | Jul. 19, 2018    |  |  |  |
| Bilog Antenna             | ETS-LINDGREN            | 3142E     | 00117537   | Mar.25, 2017  | Mar. 24, 2018    |  |  |  |
| Bilog Antenna             | ETS-LINDGREN            | 3142E     | 00117542   | Mar.25, 2017  | Mar. 24, 2018    |  |  |  |
| Horn Antenna              | ETS-LINDGREN            | 3117      | 00143207   | Mar.24, 2017  | Mar. 23, 2018    |  |  |  |
| Horn Antenna              | ETS-LINDGREN            | 3117      | 00143209   | Mar.24, 2017  | Mar. 23, 2018    |  |  |  |
| Pre-amplifier             | HP                      | 11909A    | 185903     | Mar.24, 2017  | Mar. 23, 2018    |  |  |  |
| Pre-amplifier             | HP                      | 8447B     | 3008A00849 | Mar.25, 2017  | Mar. 24, 2018    |  |  |  |
| Cable                     | HUBER+SUHNER            | 100       | SUCOFLEX   | Mar.25, 2017  | Mar. 24, 2018    |  |  |  |
| Signal<br>Generator       | Rohde & Schwarz         | SML03     | IKW682-054 | Mar.25, 2017  | Mar. 24, 2018    |  |  |  |
| Positioning<br>Controller | ETS-LINDGREN            | 2090      | N/A        | N/A           | N/A              |  |  |  |



# 2. Test Summary

| Test Items         | Test Requirement           | Test Method | Result |
|--------------------|----------------------------|-------------|--------|
| Conducted Emission | FCC Part 15:2016 Subpart B | ANSI C63.4  | N/A    |
| Radiated Emission  | FCC Part 15:2016 Subpart B | ANSI C63.4  | Pass   |




## 3. Conducted Emission Test

- 3.1 Test Standard and Limit
  - 3.1.1Test Standard FCC Part 15 B: 2016
  - 3.1.2 Test Limit

| Eroguanov     | Maximum RF Line Voltage (dBµV) |               |  |  |
|---------------|--------------------------------|---------------|--|--|
| Frequency     | Quasi-peak Level               | Average Level |  |  |
| 150kHz~500kHz | 66 ~ 56 *                      | 56 ~ 46 *     |  |  |
| 500kHz~5MHz   | 56                             | 46            |  |  |
| 5MHz~30MHz    | 60                             | 50            |  |  |

\*decreasing linearly with logarithm of the frequency

3.2 Test Setup



### 3.3 Test Procedure

The EUT was placed 0.15 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

The cables shall be insulated (by up to 15 cm) from the horizontal ground reference plane, and shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.



LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

#### 3.4 Test Data

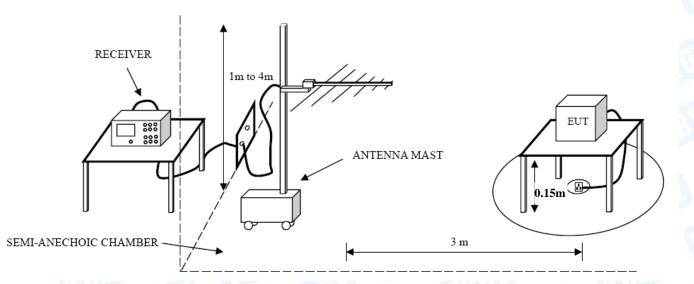
This test is not applicable.



## 4. Radiated Emission Test

- 4.1 Test Standard and Limit
  - 4.1.1 Test Standard FCC Part 15 B: 2016

#### 4.1.2 Test Limit


Radiated Emission Test Limit (Class B)

| Frequency<br>MHz | Field Strengths Limits<br>dB(µV/m) |
|------------------|------------------------------------|
| 30 ~ 88          | 40.0                               |
| 88~216           | 43.5                               |
| 216~960          | 46.0                               |
| 960 ~ 1000       | 54.0                               |

\* The lower limit shall apply at the transition frequency.

\* The test distance is 3m.

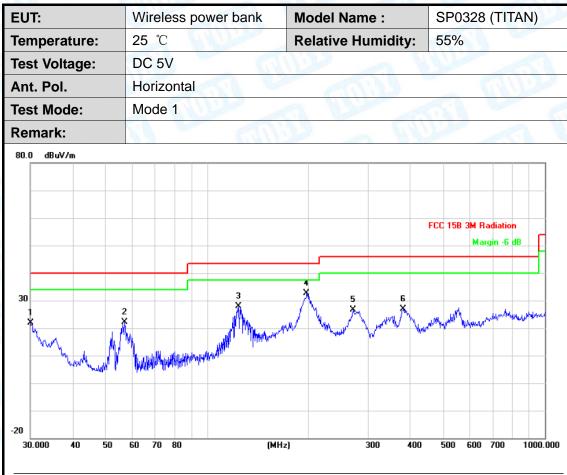
### 4.2 Test Setup



#### 4.3 Test Procedure

The EUT was placed on the top of a rotating table which is 0.15 meters above the ground. EUT is set 3.0 meters away from the receiving antenna that mounted on a antenna tower. The table was rotated 360 degrees to determine the position of the highest radiation, the antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

Measurements shall be made with a quasi-peak measuring receiver in the frequency range




30MHz to 1000MHz. If the Peak Mode measured value compliance with and lower than quasi-peak mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

## 4.4 Test Data

Please refer to the following pages.





| No | . Mk | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 30.0000  | 35.67            | -13.78            | 21.89            | 40.00  | -18.11 | peak     |
| 2  |      | 56.9912  | 46.24            | -24.15            | 22.09            | 40.00  | -17.91 | peak     |
| 3  |      | 124.1330 | 49.68            | -21.92            | 27.76            | 43.50  | -15.74 | peak     |
| 4  | *    | 197.2001 | 52.62            | -19.92            | 32.70            | 43.50  | -10.80 | peak     |
| 5  |      | 270.3748 | 43.66            | -16.93            | 26.73            | 46.00  | -19.27 | peak     |
| 6  |      | 381.2487 | 40.24            | -13.25            | 26.99            | 46.00  | -19.01 | peak     |



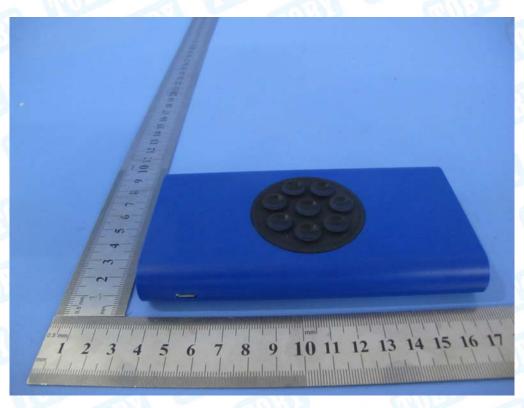
|               |                |             |              |            |                   | A A A A A A A A A A A A A A A A A A A |         |                                      |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|---------------|----------------|-------------|--------------|------------|-------------------|---------------------------------------|---------|--------------------------------------|---------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|
| EUT:          |                | Wire        | less po      | ower b     | ank N             | lodel Nam                             | ie :    | SF                                   | P0328         | (TIT)          | TAN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |  |  |
| Temperatu     | emperature: 25 |             |              |            | R                 | elative Hu                            | : 55    | %                                    | 8             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
| Test Voltag   | DC 5V          |             |              |            |                   |                                       |         |                                      |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
| Ant. Pol.     | Vertical       |             |              |            |                   |                                       |         |                                      |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
| Test Mode     | :              | Mode 1      |              |            |                   |                                       |         |                                      |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
| Remark:       | 23             |             |              | Can B      |                   | 8                                     | M.S.    |                                      | ~             | 9              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
| 80.0 dBuV/m   |                |             |              |            |                   |                                       |         |                                      |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _      |  |  |
|               |                |             |              |            |                   |                                       |         |                                      |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|               |                |             |              |            |                   |                                       |         |                                      |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|               |                |             |              |            |                   |                                       | FCC 1   | FCC 15B 3M Radiation<br>Margin -6 dB |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|               |                |             |              |            |                   |                                       |         |                                      | Mai           | gin -6         | 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1      |  |  |
|               | 2              |             |              |            |                   | 5                                     |         |                                      |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
| 30            | , MuMu         | 3           |              |            | 4<br>The second   | × A                                   |         |                                      |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
| mm            |                | "\ <b>M</b> | huthelik.two |            | MAN GALANNA A     | N.C                                   | and was | u met                                | of the design | and the second | and a start of the | den de |  |  |
| MUM           | l www.         | W.          |              | HUNNY HAND |                   | 1                                     | Yr.     | de Castrala A                        |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|               |                |             |              |            |                   |                                       |         |                                      |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|               |                |             |              |            |                   |                                       |         |                                      |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|               |                |             |              |            |                   |                                       |         |                                      |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
| -20 30.000 40 | ) 50           | 60 70       | ) 80         |            | (MHz)             |                                       | 300 4   | 100 50                               | 0 600         | 700            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00.00  |  |  |
|               |                |             |              |            | -                 |                                       |         |                                      |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
| No. Mk. Fr    |                | eq.         | Read<br>Lev  | •          | Correct<br>Factor | Measure<br>ment                       |         | nit                                  | Ove           | er             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|               | M              | Ηz          | dBı          | uV         | dB/m              | dBuV/m                                | u dB    | uV/m                                 | dB            |                | Dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ector  |  |  |
| 1             | 30.0000        |             |              | 92         | -13.78            | 29.14                                 | 40      | 0.00                                 | .00 -10.86    |                | peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |  |  |
| 2             | 55.0           | 274         | 56.75        |            | -24.13            | 32.62                                 | 40      | 0.00                                 | 00 -7.38      |                | peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |  |  |
| 3             | 68.6           | 310         | 49.17        |            | -23.40            | 25.77                                 | 40      | 0.00 -14.23                          |               | 23             | peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |  |  |
| 4             | 126.3          | 3286        | 51.40        |            | -21.86            | 29.54                                 | 43      | 3.50                                 | -13.96        |                | peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |  |  |
| 5 *           | 199.2          | 57.         | 26           | -19.80     | 37.46             | 43                                    | 3.50    | -6.0                                 | )4            | ре             | ak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |  |  |
| 6             | 210.0482       |             |              | 80         | -19.31            | 31.49                                 | 43      | 3.50                                 | -12.          | 01             | ре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ak     |  |  |
|               |                |             |              |            |                   |                                       |         |                                      |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |



| EUT:                | Wireless powe        | er bank N                                                                                        | lodel Name :                                                                                     | SP0328 (TITAN)                  |          |  |  |  |  |  |  |  |  |
|---------------------|----------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------|----------|--|--|--|--|--|--|--|--|
| Temperature:        | <b>25</b> ℃          | R                                                                                                | elative Humidity:                                                                                | 55%                             |          |  |  |  |  |  |  |  |  |
| Test Voltage:       | DC 5V                | DC 5V                                                                                            |                                                                                                  |                                 |          |  |  |  |  |  |  |  |  |
| Ant. Pol.           | Horizontal           | Horizontal                                                                                       |                                                                                                  |                                 |          |  |  |  |  |  |  |  |  |
| Test Mode:          | Mode 2               |                                                                                                  |                                                                                                  |                                 |          |  |  |  |  |  |  |  |  |
| Remark:             |                      | Call St                                                                                          |                                                                                                  |                                 | 01       |  |  |  |  |  |  |  |  |
| 80.0 dBu∀/m         |                      |                                                                                                  |                                                                                                  |                                 |          |  |  |  |  |  |  |  |  |
| 30                  |                      | 1<br>2<br>2<br>2<br>2<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | 3<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | FCC 15B 3M Radiati<br>Margin -1 |          |  |  |  |  |  |  |  |  |
| -20<br>30.000 40 50 | 60 70 80             | (MHz)                                                                                            | 300 40                                                                                           | 0 500 600 700                   | 1000.000 |  |  |  |  |  |  |  |  |
| No. Mk. F           | Readin<br>req. Level | -                                                                                                | Measure-<br>ment Lin                                                                             | nit Over                        |          |  |  |  |  |  |  |  |  |
| Ν                   | MHz dBu∨             | dB/m                                                                                             | dBuV/m dBu                                                                                       | uV/m dB                         | Detector |  |  |  |  |  |  |  |  |
| 1 140               | .8351 51.08          | -21.47                                                                                           | 29.61 43                                                                                         | .50 -13.89                      | peak     |  |  |  |  |  |  |  |  |
| 2 153               | .7384 43.97          | -20.47                                                                                           | 23.50 43                                                                                         | .50 -20.00                      | peak     |  |  |  |  |  |  |  |  |
| 3 * 217             | .5443 55.28          | -18.97                                                                                           | 36.31 46                                                                                         | .00 -9.69                       | peak     |  |  |  |  |  |  |  |  |
| 4 250               | .3012 50.27          | -17.39                                                                                           | 32.88 46                                                                                         | .00 -13.12                      | peak     |  |  |  |  |  |  |  |  |
| 5 280               | .0237 45.00          | -16.71                                                                                           | 28.29 46                                                                                         | .00 -17.71                      | peak     |  |  |  |  |  |  |  |  |
| 6 515               | .4374 36.54          | -9.91                                                                                            | 26.63 46                                                                                         | .00 -19.37                      | peak     |  |  |  |  |  |  |  |  |
|                     |                      |                                                                                                  |                                                                                                  |                                 |          |  |  |  |  |  |  |  |  |

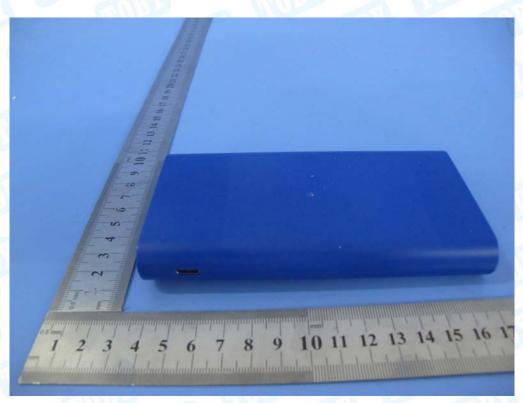


| EUT:           | T: Wire           |          |             |               |        | power            | bank        | M       | odel Nam           | ne :   |                | SPO       | 328     | (TIT    | ITAN) |        |  |  |  |
|----------------|-------------------|----------|-------------|---------------|--------|------------------|-------------|---------|--------------------|--------|----------------|-----------|---------|---------|-------|--------|--|--|--|
| Temperature: 2 |                   |          | <b>25</b> ℃ |               |        |                  |             | Re      | Relative Humidity: |        |                |           | 55%     |         |       |        |  |  |  |
| Test Voltage:  |                   |          | DC 5V       |               |        |                  |             |         |                    |        |                |           |         |         |       |        |  |  |  |
| Ant. Pol.      |                   |          | Ve          | Vertical      |        |                  |             |         |                    |        |                |           |         |         |       |        |  |  |  |
| Test Me        | ode:              |          | Мо          | de            | 2      | 12               |             | 0       | 125                |        |                |           |         | V.      |       |        |  |  |  |
| Remar          | k:                |          |             |               | V      |                  |             |         |                    | 1      |                |           |         |         | 3     |        |  |  |  |
| 80.0 dB        | uV/m              |          |             |               |        |                  |             |         |                    |        |                |           |         |         |       | _      |  |  |  |
|                |                   |          |             |               |        |                  |             |         |                    |        |                |           |         |         |       |        |  |  |  |
|                |                   |          |             |               |        |                  |             |         |                    |        |                |           |         |         |       |        |  |  |  |
|                |                   |          |             |               |        | _                |             |         |                    |        | F              | CC 15E    | 3M R    | adiatio | n     |        |  |  |  |
|                |                   |          |             |               |        | _                |             |         |                    |        |                |           | Ma      | rgin -6 | dB    |        |  |  |  |
|                |                   |          |             |               |        |                  |             |         |                    |        |                |           |         |         |       |        |  |  |  |
| 30             |                   |          |             |               |        |                  |             |         |                    |        |                |           |         |         |       |        |  |  |  |
|                |                   |          |             |               |        |                  |             |         | 2<br>X 3           |        | 4              |           | 5<br>X  | 6<br>   | heren | NW     |  |  |  |
|                |                   |          | _           | -             |        |                  | 1           |         | MANN               | Muthan | الكمهر بالهجلي | www.Maril | AN ANNO |         |       |        |  |  |  |
| the second     | Low High many has |          |             | العليانية     | NewAlt | per the way have | man the sum | wheelow |                    |        |                | _         |         |         |       |        |  |  |  |
|                |                   | hNWHaph1 | MANANA      | a va da la se |        |                  |             |         |                    |        |                |           | _       | _       |       | _      |  |  |  |
|                |                   |          |             |               |        |                  |             |         |                    |        |                |           |         |         |       |        |  |  |  |
| -20            |                   |          |             |               |        |                  |             |         |                    |        |                |           |         |         |       |        |  |  |  |
| 30.000         | 40                | 50       | 60          | 70 (          | 80     |                  | (MH         | lz)     |                    | 300    | 400            | 500       | 600     | 700     | 10    | 00.000 |  |  |  |
|                |                   |          |             |               | Rea    | ading            | Corre       | ect     | Measur             | e-     |                |           |         |         |       |        |  |  |  |
| No.            | Mk.               | Fr       | eq.         |               |        | evel             | Fact        |         | ment               | L      | .imit          |           | Ove     | er      |       |        |  |  |  |
|                |                   | Mł       | Ηz          |               | d      | BuV              | dB/m        | ı       | dBuV/m             | n d    | lBuV/r         | n         | dB      |         | Dete  | ector  |  |  |  |
| 1              | 1                 | 133.6188 |             |               | 37.87  |                  | -21.6       | 6       | 16.21              |        | 43.50 -        |           | -27.29  |         | peak  |        |  |  |  |
| 2              | 2                 | 16.7     | 7828        | }             | 43     | 3.12             | -19.0       | )1      | 24.11              | 4      | 46.00          | ) .       | 21.     | 89      | ре    | eak    |  |  |  |
| 3              | 2                 | 53.8367  |             |               | 37.82  |                  | -17.3       | 2       | 20.50              |        | 46.00          |           | -25.50  |         | peak  |        |  |  |  |
| 4              | 4                 | 460.7271 |             |               | 30.53  |                  | -11.2       | .8      | 19.25              |        | 46.00          |           | -26.75  |         | peak  |        |  |  |  |
| 5              | 5                 | 82.7     | 7425        | 5             | 31     | 1.53             | -9.02       | 2       | 22.51              | 4      | 46.00          | ) -       | -23.    | 49      | pe    | ak     |  |  |  |
| 6              | * 7               | 37.0     | 0714        | Ļ             | 30     | 0.70             | -6.04       | 4       | 24.66              | i 4    | 46.00          | ) .       | 21.     | 34      | ре    | eak    |  |  |  |
|                |                   |          |             |               |        |                  |             |         |                    |        |                |           |         |         | -     |        |  |  |  |

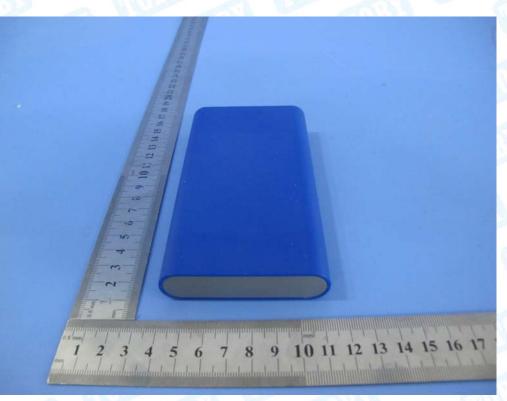



## 5. Photographs - Constructional Details

Photo 1 Appearance of EUT




#### Photo 2 Appearance of EUT






### Photo 3 Appearance of EUT

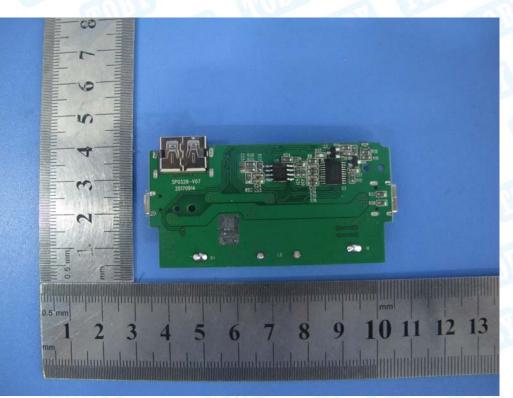


## Photo 4 Appearance of EUT





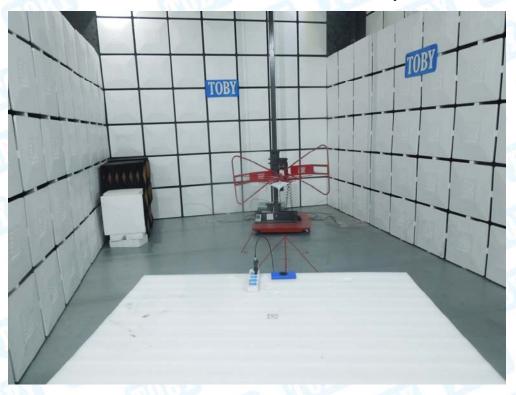

#### Photo 5 Internal of EUT

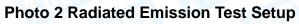



#### Photo 6 Appearance of PCB






#### Photo 7 Appearance of PCB






# 6. Photographs - Test Setup

Photo 1 Radiated Emission Test Setup







-----END OF REPORT-----